Exercise 13

Solve the initial-value problem.

$$y'' - 5y' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$

Solution

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y = e^{rx}$.

$$y = e^{rx} \quad \rightarrow \quad y' = re^{rx} \quad \rightarrow \quad y'' = r^2 e^{rx}$$

Substitute these formulas into the ODE.

$$r^2 e^{rx} - 5(re^{rx}) + 4(e^{rx}) = 0$$

Divide both sides by e^{rx} .

$$r^2 - 5r + 4 = 0$$

Solve for r.

$$(r-4)(r-1) = 0$$

 $r = \{1, 4\}$

Two solutions to the ODE are e^x and e^{4x} . According to the principle of superposition, the general solution is a linear combination of these two.

$$y(x) = C_1 e^x + C_2 e^{4x}$$

Differentiate it with respect to x.

$$y'(x) = C_1 e^x + 4C_2 e^{4x}$$

Apply the initial conditions to determine C_1 and C_2 .

$$y(0) = C_1 + C_2 = 0$$

 $y'(0) = C_1 + 4C_2 = 1$

Solve the system.

$$C_1 = -\frac{1}{3}$$
 $C_2 = \frac{1}{3}$

 $y(x) = -\frac{1}{3}e^x + \frac{1}{3}e^{4x}.$

Therefore,

www.stemjock.com

Below is a plot of the solution versus x.

