Exercise 13

Solve the initial-value problem.

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}-5\left(r e^{r x}\right)+4\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-5 r+4=0
$$

Solve for r.

$$
\begin{gathered}
(r-4)(r-1)=0 \\
r=\{1,4\}
\end{gathered}
$$

Two solutions to the ODE are e^{x} and $e^{4 x}$. According to the principle of superposition, the general solution is a linear combination of these two.

$$
y(x)=C_{1} e^{x}+C_{2} e^{4 x}
$$

Differentiate it with respect to x.

$$
y^{\prime}(x)=C_{1} e^{x}+4 C_{2} e^{4 x}
$$

Apply the initial conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
y(0) & =C_{1}+C_{2}=0 \\
y^{\prime}(0) & =C_{1}+4 C_{2}=1
\end{aligned}
$$

Solve the system.

$$
C_{1}=-\frac{1}{3} \quad C_{2}=\frac{1}{3}
$$

Therefore,

$$
y(x)=-\frac{1}{3} e^{x}+\frac{1}{3} e^{4 x} .
$$

Below is a plot of the solution versus x.

